Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.073
1.
Bioconjug Chem ; 35(4): 528-539, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38514970

Cancer which causes high mortality globally threatens public health seriously. There is an urgent need to develop tumor-specific near-infrared (NIR) imaging agents to achieve precise diagnosis and guide effective treatment. In recent years, imaging probes that respond to acidic environments such as endosomes, lysosomes, or acidic tumor microenvironments (TMEs) are being developed. However, because of their nonspecific internalization by both normal and tumor cells, resulting in a poor signal-to-noise ratio in diagnosis, these pH-sensitive probes fail to be applied to in vivo tumor imaging. To address this issue, a cholecystokinin-2 receptor (CCK2R)-targeted TME-sensitive NIR fluorescent probe R2SM was synthesized by coupling pH-sensitive heptamethine cyanine with a CCK2R ligand, minigastrin analogue 11 (MG11) for in vivo imaging, in which MG11 would target overexpressed CCK2Rs in gastrointestinal stromal tumors (GISTs). Cell uptake assay demonstrated that R2SM exhibited a high affinity for CCK2R, leading to receptor-mediated internalization and making probes finally accumulated in the lysosomes of tumor cells, which suggested in the tumor tissues, the probes were distributed in the extracellular acidic TME and intracellular lysosomes. With a pKa of 6.83, R2SM can be activated at the acidic TME (pH = 6.5-6.8) and lysosomes (pH = 4.5-5.0), exhibiting an apparent pH-dependent behavior and generating more intense fluorescence in these acidic environments. In vivo imaging showed that coupling of MG11 with a pH-sensitive NIR probe facilitated the accumulation of probe and enhanced the fluorescence in CCK2R-overexpressed HT-29 tumor cells. A high signal was observed in the tumor region within 0.5 h postinjection, indicating its potential application in intraoperative imaging. Fluorescence imaging of R2SM exhibited higher tumor-to-liver and tumor-to-kidney ratios (2.1:1 and 2.3:1, respectively), compared separately with the probes that are lipophilic, pH-insensitive, or MG11-free. In vitro and in vivo studies demonstrated that the synergistic effect of tumor targeting with pH sensitivity plays a vital role in the high signal-to-noise ratio of the NIR imaging probe. Moreover, different kinds of tumor-targeting vectors could be conjugated simultaneously with the NIR dye, which would further improve the receptor affinity and targeting efficiency.


Fluorescent Dyes , Receptor, Cholecystokinin B , Cell Line, Tumor , Optical Imaging
2.
Theranostics ; 14(5): 1815-1828, 2024.
Article En | MEDLINE | ID: mdl-38505611

Peptides are ideal for theranostic development as they afford rapid target accumulation, fast clearance from background tissue, and exhibit good tissue penetration. Previously, we developed a novel series of peptides that presented discreet folding propensity leading to an optimal candidate [68Ga]Ga-DOTA-GA1 ([D-Glu]6-Ala-Tyr-NMeGly-Trp-NMeNle-Asp-Nal-NH2) with 50 pM binding affinity against cholecystokinin-2 receptors (CCK2R). However, we were confronted with challenges of unfavorably high renal uptake. Methods: A structure activity relationship study was undertaken of the lead theranostic candidate. Prudent structural modifications were made to the peptide scaffold to evaluate the contributions of specific N-terminal residues to the overall biological activity. Optimal candidates were then evaluated in nude mice bearing transfected A431-CCK2 tumors, and their biodistribution was quantitated ex vivo. Results: We identified and confirmed that D-Glu3 to D-Ala3 substitution produced 2 optimal candidates, [68Ga]Ga-DOTA-GA12 and [68Ga]Ga-DOTA-GA13. These radiopeptides presented with high target/background ratios, enhanced tumor retention, excellent metabolic stability in plasma and mice organ homogenates, and a 4-fold reduction in renal uptake, significantly outperforming their non-alanine counterparts. Conclusions: Our study identified novel radiopharmaceutical candidates that target the CCK2R. Their high tumor uptake and reduced renal accumulation warrant clinical translation.


Gallium Radioisotopes , Receptor, Cholecystokinin B , Mice , Animals , Receptor, Cholecystokinin B/metabolism , Gallium Radioisotopes/chemistry , Precision Medicine , Mice, Nude , Tissue Distribution , Cell Line, Tumor , Peptides/chemistry
3.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G291-G309, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38252699

Hepatocellular carcinoma (HCC) is the fastest-growing cause of cancer-related deaths worldwide. Chronic inflammation and fibrosis are the greatest risk factors for the development of HCC. Although the cell of origin for HCC is uncertain, many theories believe this cancer may arise from liver progenitor cells or stem cells. Here, we describe the activation of hepatic stem cells that overexpress the cholecystokinin-B receptor (CCK-BR) after liver injury with either a DDC diet (0.1% 3, 5-diethoxy-carbonyl 1,4-dihydrocollidine) or a NASH-inducing CDE diet (choline-deficient ethionine) in murine models. Pharmacologic blockade of the CCK-BR with a receptor antagonist proglumide or knockout of the CCK-BR in genetically engineered mice during the injury diet reduces the expression of hepatic stem cells and prevents the formation of three-dimensional tumorspheres in culture. RNA sequencing of livers from DDC-fed mice treated with proglumide or DDC-fed CCK-BR knockout mice showed downregulation of differentially expressed genes involved in cell proliferation and oncogenesis and upregulation of tumor suppressor genes compared with controls. Inhibition of the CCK-BR decreases hepatic transaminases, fibrosis, cytokine expression, and alters the hepatic immune cell signature rendering the liver microenvironment less oncogenic. Furthermore, proglumide hastened recovery after liver injury by reversing fibrosis and improving markers of synthetic function. Proglumide is an older drug that is orally bioavailable and being repurposed for liver conditions. These findings support a promising therapeutic intervention applicable to patients to prevent the development of HCC and decrease hepatic fibrosis.NEW & NOTEWORTHY This investigation identified a novel pathway involving the activation of hepatic stem cells and liver oncogenesis. Receptor blockade or genetic disruption of the cholecystokinin-B receptor (CCK-BR) signaling pathway decreased the activation and proliferation of hepatic stem cells after liver injury without eliminating the regenerative capacity of healthy hepatocytes.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Mice , Animals , Receptor, Cholecystokinin B/genetics , Receptor, Cholecystokinin B/metabolism , Carcinoma, Hepatocellular/pathology , Proglumide/pharmacology , Liver Neoplasms/metabolism , Liver/metabolism , Fibrosis , Stem Cells/metabolism , Carcinogenesis/metabolism , Cell Transformation, Neoplastic/metabolism , Cholecystokinin/metabolism , Tumor Microenvironment
4.
J Nucl Med ; 65(1): 33-39, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-37945383

Because of the need for radiolabeled theranostics for the detection and treatment of medullary thyroid cancer (MTC), and the yet unresolved stability issues of minigastrin analogs targeting the cholecystokinin-2 receptor (CCK-2R), our aim was to address in vivo stability, our motivation being to develop and evaluate DOTA-CCK-66 (DOTA-γ-glu-PEG3-Trp-(N-Me)Nle-Asp-1-Nal-NH2, PEG: polyethylene glycol) and DOTA-CCK-66.2 (DOTA-glu-PEG3-Trp-(N-Me)Nle-Asp-1-Nal-NH2), both derived from DOTA-MGS5 (DOTA-glu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-1-Nal-NH2), and clinically translate [68Ga]Ga-DOTA-CCK-66. Methods: 64Cu and 67Ga labeling of DOTA-CCK-66, DOTA-CCK-66.2, and DOTA-MGS5 was performed at 90°C within 15 min (1.0 M NaOAc buffer, pH 5.5, and 2.5 M 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer, respectively). 177Lu labeling of these 3 compounds was performed at 90°C within 15 min (1.0 M NaOAc buffer, pH 5.5, 0.1 M sodium ascorbate). CCK-2R affinity of natGa/natCu/natLu-labeled DOTA-CCK-66, DOTA-CCK-66.2, and DOTA-MGS5 was examined on AR42J cells. The in vivo stability of 177Lu-labeled DOTA-CCK-66 and DOTA-MGS5 was examined at 30 min after injection in CB17-SCID mice. Biodistribution studies at 1 h ([67Ga]Ga-DOTA-CCK-66) and 24 h ([177Lu]Lu-DOTA-CCK-66/DOTA-MGS5) after injection were performed on AR42J tumor-bearing CB17-SCID mice. In a translation to the human setting, [68Ga]Ga-DOTA-CCK-66 was administered and whole-body PET/CT was acquired at 120 min after injection in 2 MTC patients. Results: Irrespective of the metal or radiometal used (copper, gallium, lutetium), high CCK-2R affinity (half-maximal inhibitory concentration, 3.6-6.0 nM) and favorable lipophilicity were determined. In vivo, increased numbers of intact peptide were found for [177Lu]Lu-DOTA-CCK-66 compared with [177Lu]Lu-DOTA-MGS5 in murine urine (23.7% ± 9.2% vs. 77.8% ± 2.3%). Overall tumor-to-background ratios were similar for both 177Lu-labeled analogs. [67Ga]Ga-DOTA-CCK-66 exhibited accumulation (percentage injected dose per gram) that was high in tumor (19.4 ± 3.5) and low in off-target areas (blood, 0.61 ± 0.07; liver, 0.31 ± 0.02; pancreas, 0.23 ± 0.07; stomach, 1.81 ± 0.19; kidney, 2.51 ± 0.49) at 1 h after injection. PET/CT examination in 2 MTC patients applying [68Ga]Ga-DOTA-CCK-66 confirmed multiple metastases. Conclusion: Because of the high in vivo stability and favorable overall preclinical performance of [nat/67Ga]Ga-/[nat/177Lu]Lu-DOTA-CCK-66, a proof-of-concept clinical investigation of [68Ga]Ga-DOTA-CCK-66 was completed. As several lesions could be identified and excellent biodistribution patterns were observed, further patient studies applying [68Ga]Ga- and [177Lu]Lu-DOTA-CCK-66 are warranted.


Positron Emission Tomography Computed Tomography , Thyroid Neoplasms , Humans , Animals , Mice , Gallium Radioisotopes/chemistry , Tissue Distribution , Copper , Mice, SCID , Thyroid Neoplasms/diagnostic imaging , Receptor, Cholecystokinin B/metabolism
5.
Int J Mol Sci ; 24(23)2023 Nov 28.
Article En | MEDLINE | ID: mdl-38069171

Micro-environmental factors, including stromal and immune cells, cytokines, and circulating hormones are well recognized to determine cancer progression. Melanoma cell growth was recently shown to be suppressed by cholecystokinin/gastrin (CCK) receptor antagonists, and our preliminary data suggested that melanoma patients with Helicobacter gastritis (which is associated with elevated serum gastrin) might have an increased risk of cancer progression. Therefore, in the present study, we examined how gastrin may act on melanoma cells. In 89 melanoma patients, we found a statistically significant association between circulating gastrin concentrations and melanoma thickness and metastasis, which are known risk factors of melanoma progression and prognosis. Immunocytochemistry using a validated antibody confirmed weak to moderate CCK2R expression in both primary malignant melanoma cells and the melanoma cell lines SK-MEL-2 and G361. Furthermore, among the 219 tumors in the Skin Cutaneous Melanoma TCGA Pan-Cancer dataset showing gastrin receptor (CCKBR) expression, significantly higher CCKBR mRNA levels were linked to stage III-IV than stage I-II melanomas. In both cell lines, gastrin increased intracellular calcium levels and stimulated cell migration and invasion through mechanisms inhibited by a CCK2 receptor antagonist. Proteomic studies identified increased MMP-2 and reduced TIMP-3 levels in response to gastrin that were likely to contribute to the increased migration of both cell lines. However, the effects of gastrin on tumor cell invasion were relatively weak in the presence of the extracellular matrix. Nevertheless, dermal fibroblasts/myofibroblasts, known also to express CCK2R, increased gastrin-induced cancer cell invasion. Our data suggest that in a subset of melanoma patients, an elevated serum gastrin concentration is a risk factor for melanoma tumor progression, and that gastrin may act on both melanoma and adjacent stromal cells through CCK2 receptors to promote mechanisms of tumor migration and invasion.


Melanoma , Skin Neoplasms , Humans , Melanoma/metabolism , Gastrins/pharmacology , Gastrins/metabolism , Proteomics , Receptors, Cholecystokinin , Receptor, Cholecystokinin B/genetics , Receptor, Cholecystokinin B/metabolism
6.
Exp Biol Med (Maywood) ; 248(20): 1718-1731, 2023 10.
Article En | MEDLINE | ID: mdl-37787155

Immune balance is crucial for an organism's survival and is inseparable from the regulation of the nervous system. Accumulating evidence indicates that cholecystokinin (CCK) plays an important role in mediating the immune response through the activation of cholecystokinin receptors (CCKRs). However, it remains unclear whether CCKRs deficiency may impair immune balance. Here, we showed that CCK2R-deficient adult mice were immunocompromised and had an increased risk of shock and even death in an endotoxemia (ETM)/endotoxin shock (ES) model. In addition, in both adult and juvenile mice, CCK2R deficiency not only influenced the development of CD4 single-positive (SP) thymocytes in thymic positive selection but also decreased the population of CD3+ CD4+ T cells in the spleen. More importantly, CCK2R deficiency inhibited the expression of major histocompatibility complex class II (MHC II) and CD83 on cortical thymic epithelial cells (cTECs) in juvenile and adult mice. Overall, our study suggests that CCK2R is essential for maintaining CD4+ T cell development in the thymus and reveals that CCK2R plays an important role in maintaining immune balance.


Receptor, Cholecystokinin B , T-Lymphocytes , Mice , Animals , Receptor, Cholecystokinin B/genetics , Histocompatibility Antigens Class II/metabolism , Thymus Gland , Epithelial Cells/metabolism , CD4-Positive T-Lymphocytes/metabolism , Mice, Inbred C57BL
7.
J Bone Miner Metab ; 41(6): 752-759, 2023 Nov.
Article En | MEDLINE | ID: mdl-37676507

INTRODUCTION: The discrepancy between bone mineral density (BMD), the gold standard for bone assessment, and bone strength is a constraint in diagnosing bone function and determining treatment strategies for several bone diseases. Gastric hypochlorhydria induced by clinically used proton pump inhibitor (PPI) therapy indicates a discordance between changes in BMD and bone strength. Here, we used Cckbr-deficient mice with gastric hypochlorhydria to examine the effect of gastric hypochlorhydria on bone mass, BMD, and preferential orientation of the apatite crystallites, which is a strong indicator of bone strength. MATERIALS AND METHODS: Cckbr-deficient mice were created, and their femurs were analyzed for BMD and preferential orientation of the apatite c-axis along the femoral long axis. RESULTS: Cckbr-deficient mouse femurs displayed a slight osteoporotic bone loss at 18 weeks of age; however, BMD was comparable to that of wild-type mice. In contrast, apatite orientation in the femur mid-shaft significantly decreased from 9 to 18 weeks. To the best of our knowledge, this is the first report demonstrating the deterioration of apatite orientation in the bones of Cckbr-deficient mice. CONCLUSION: Lesions in Cckbr-deficient mice occurred earlier in apatite orientation than in bone mass. Hence, bone apatite orientation may be a promising method for detecting hypochlorhydria-induced osteoporosis caused by PPI treatment and warrants urgent clinical applications.


Achlorhydria , Receptor, Cholecystokinin B , Mice , Animals , Apatites , Bone and Bones , Bone Density , Femur/diagnostic imaging
8.
Clin Exp Hypertens ; 45(1): 2245580, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37641972

OBJECTIVE: To investigate whether GRK4 regulates the phosphorylation and function of renal CCKBR. METHODS: GRK4 A142V transgenic mice were used as an animal model of enhanced GRK4 activity, and siRNA was used to silence the GRK4 gene to investigate the regulatory effect of GRK4 on CCKBR phosphorylation and function. Finally, the co-localization and co-connection of GRK4 and CCKBR in RPT cells were observed by laser confocal microscopy and immunoprecipitation to explore the mechanism of GRK4 regulating CCKBR. RESULTS: Gastrin infusion significantly increased urinary flow and sodium excretion rates in GRK4 WT mice (P < .05). GRK4 siRNA did not affect CCKBR protein expression in WKY RPT cells and SHR RPT cells, but remarkably reduced CCKBR phosphorylation in WKY and SHR RPT cells (P < .05). The inhibitory effect of gastrin on Na+-K+ -ATPase activity in WKY RPT cells was further enhanced by the reduction of GRK4 expression (P < .05), while GRK4 siRNA restored the inhibitory effect of gastrin on Na+-K+ -ATPase activity in SHR RPT cells. Laser confocal and Co-immunoprecipitation results showed that GRK4 and CCKBR co-localized in cultured RPT cells' cytoplasm. CONCLUSION: GRK4 participates in the development of hypertension by regulating the phosphorylation of renal CCKBR leading to impaired CCKBR function and water and sodium retention. Knockdown of GRK4 restored the function of CCKBR. The enhanced co-connection between GRK4 and CCKBR may be an important reason for the hyperphosphorylation of GRK4 and CCKBR involved in the pathogenesis of hypertension.


Hypertension , Receptor, Cholecystokinin B , Animals , Mice , Gastrins/pharmacology , Hypertension/genetics , RNA, Small Interfering , Sodium , Adenosine Triphosphatases
9.
Int J Mol Sci ; 24(13)2023 Jul 03.
Article En | MEDLINE | ID: mdl-37446213

A robust cell-free platform technology, ribosome display in combination with cloning, expression, and purification was utilized to develop single chain Fragment variable (scFv) antibody variants as pain therapy directed at the mouse cholecystokinin B (CCK-B) receptor. Three effective CCK-B peptide-specific scFvs were generated through ribosomal display technology. Soluble expression and ELISA analysis showed that one antibody, scFv77-2 had the highest binding and could be purified from bacterial cells in large quantities. Octet measurements further revealed that the CCK-B scFv77-2 antibody had binding kinetics of KD = 1.794 × 10-8 M. Molecular modeling and docking analyses suggested that the scFv77-2 antibody shaped a proper cavity to embed the whole CCK-B peptide molecule and that a steady-state complex was formed relying on intermolecular forces, including hydrogen bonding, electrostatic force, and hydrophobic interactions. Thus, the scFv antibody can be applied for mechanistic intermolecular interactions and functional in vivo studies of CCK-BR. The high affinity scFv77-2 antibody showed good efficacy with binding to CCK-BR tested in a chronic pain model. In vivo studies validated the efficacy of the CCK-B receptor (CCK-BR) scFv77-2 antibody as a potential therapy for chronic trigeminal nerve injury-induced pain. Mice were given a single dose of the CCK-B receptor (CCK-BR) scFv antibody 3 weeks after induction of a chronic trigeminal neuropathic pain model, during the transition from acute to chronic pain. The long-term effectiveness for the reduction of mechanical hypersensitivity was evident, persisting for months. The anxiety- and depression-related behaviors typically accompanying persisting hypersensitivity subsequently never developed in the mice given CCK-BR scFv. The effectiveness of the antibody is the basis for further development of the lead CCK-BR scFv as a promising non-opioid therapeutic for chronic pain and the long-term reduction of chronic pain- and anxiety-related behaviors.


Chronic Pain , Neuralgia , Single-Chain Antibodies , Animals , Mice , Molecular Docking Simulation , Peptide Library , Receptor, Cholecystokinin B , Chronic Pain/therapy , Ribosomes/metabolism
10.
J Med Chem ; 66(15): 10289-10303, 2023 08 10.
Article En | MEDLINE | ID: mdl-37493526

Peptide receptor radionuclide therapy (PRRT) is a promising form of systemic radiation therapy designed to eradicate cancer. Cholecystokinin-2 receptor (CCK2R) is an important molecular target that is highly expressed in a range of cancers. This study describes the synthesis and in vivo characterization of a novel series of 177Lu-labeled peptides ([177Lu]Lu-2b-4b) in comparison with the reference CCK2R-targeting peptide CP04 ([177Lu]Lu-1b). [177Lu]Lu-1b-4b showed high chemical purity (HPLC ≥ 94%), low Log D7.4 (-4.09 to -4.55) with strong binding affinity to CCK2R (KD 0.097-1.61 nM), and relatively high protein binding (55.6-80.2%) and internalization (40-67%). Biodistribution studies of the novel 177Lu-labeled peptides in tumors (AR42J and A431-CCK2R) showed uptake one- to eight-fold greater than the reference compound CP04 at 1, 24, and 48 h. Rapid clearance and high tumor uptake and retention were established for [177Lu]Lu-2b-4b, making these compounds excellent candidates for theranostic applications against CCK2R-expressing tumors.


Neoplasms , Receptor, Cholecystokinin B , Receptor, Cholecystokinin B/metabolism , Precision Medicine , Tissue Distribution , Cell Line, Tumor , Peptides/chemistry , Neoplasms/drug therapy
11.
J Neuroendocrinol ; 35(11): e13305, 2023 11.
Article En | MEDLINE | ID: mdl-37317882

The physiology of gastric acid secretion is one of the earliest subjects in medical literature and has been continuously studied since 1833. Starting with the notion that neural stimulation alone drives acid secretion, progress in understanding the physiology and pathophysiology of this process has led to the development of therapeutic strategies for patients with acid-related diseases. For instance, understanding the physiology of parietal cells led to the developments of histamine 2 receptor blockers, proton pump inhibitors (PPIs), and recently, potassium-competitive acid blockers. Furthermore, understanding the physiology and pathophysiology of gastrin has led to the development of gastrin/CCK2 receptor (CCK2 R) antagonists. The need for refinement of existing drugs in patients have led to second and third generation drugs with better efficacy at blocking acid secretion. Further understanding of the mechanism of acid secretion by gene targeting in mice has enabled us to dissect the unique role for each regulator to leverage and justify the development of new targeted therapeutics for acid-related disorders. Further research on the mechanism of stimulation of gastric acid secretion and the physiological significances of gastric acidity in gut microbiome is needed in the future.


Gastric Acid , Gastrins , Humans , Animals , Mice , Proton Pump Inhibitors/pharmacology , Parietal Cells, Gastric , Receptor, Cholecystokinin B
12.
Mol Psychiatry ; 28(8): 3459-3474, 2023 Aug.
Article En | MEDLINE | ID: mdl-37365241

Depression is a common and severe mental disorder. Evidence suggested a substantial causal relationship between stressful life events and the onset of episodes of major depression. However, the stress-induced pathogenesis of depression and the related neural circuitry is poorly understood. Here, we investigated how cholecystokinin (CCK) and CCKBR in the basolateral amygdala (BLA) are implicated in stress-mediated depressive-like behavior. The BLA mediates emotional memories, and long-term potentiation (LTP) is widely considered a trace of memory. We identified that the cholecystokinin knockout (CCK-KO) mice impaired LTP in the BLA, while the application of CCK4 induced LTP after low-frequency stimulation (LFS). The entorhinal cortex (EC) CCK neurons project to the BLA and optogenetic activation of EC CCK afferents to BLA-promoted stress susceptibility through the release of CCK. We demonstrated that EC CCK neurons innervate CCKBR cells in the BLA and CCK-B receptor knockout (CCKBR-KO) mice impaired LTP in the BLA. Moreover, the CCKBR antagonists also blocked high-frequency stimulation (HFS) induced LTP formation in the BLA. Notably, CCKBR antagonists infusion into the BLA displayed an antidepressant-like effect in the chronic social defeat stress model. Together, these results indicate that CCKBR could be a potential target to treat depression.


Basolateral Nuclear Complex , Humans , Mice , Animals , Long-Term Potentiation/physiology , Receptor, Cholecystokinin B/physiology , Depression/drug therapy , Cholecystokinin/pharmacology , Cholecystokinin/physiology
13.
J Cancer Res Clin Oncol ; 149(10): 7069-7078, 2023 Aug.
Article En | MEDLINE | ID: mdl-36871090

PURPOSE: Cholecystokinin is present in abundance in gallbladder tissue and mediates function through two structurally related receptors, CCK1R and CCK2R. Heterodimerization of these receptors is known to impact cell growth in vitro. However, the significance of these heterodimers in gallbladder carcinogenesis is relatively unknown. METHODS: Therefore, we evaluated the expression and the dimerization status of CCK1 and CCK2 receptors in human gallbladder carcinoma cell line (GBC-SD) and resected gallbladder tissue from normal (n = 10), cholelithiasis (n = 25) and gallbladder cancer (n = 25) by immunofluorescence/immunohistochemistry and western blot. The dimerization status of CCK1R and CCK2R was evaluated by co-immunoprecipitation. To understand the effect of heterodimerization of these receptors on growth-related signaling pathways, the expression of p-AKT, rictor, raptor and p-ERK was evaluated by western blot. RESULTS: We demonstrated the expression and heterodimerization of CCK1 and CCK2 receptor in GBC-SD gall bladder carcinoma cell line. Knockdown of CCK1R and CCK2R in the cell line led to significant reduction in p-AKT (P = 0.005; P = 0.0001) and rictor (P < 0.001; P < 0.001) levels. In tissue samples, significantly higher expression of CCK1R and CCK2R was observed in gallbladder cancer when compared to other groups both by immunohistochemistry (P = 0.008 and P = 0.013) and western blot (P = 0.009 and P = 0.003). An increase in heterodimer formation of CCK1R with CCK2R was observed in gallbladder cancer when compared to normal and cholelithiasis tissues. No significant difference in the expression of p-AKT and p-ERK was observed between the three groups. CONCLUSION: Our results provide the first evidence of heterodimerization of CCK1R and CCK2R in gallbladder tissue, and its association with development of gallbladder cancer. This finding has potential clinical and therapeutic significance.


Carcinoma in Situ , Gallbladder Neoplasms , Humans , Receptor, Cholecystokinin B/genetics , Cholecystokinin/metabolism , Gallbladder Neoplasms/genetics , Proto-Oncogene Proteins c-akt/metabolism , Dimerization , Carcinogenesis/genetics
14.
J Integr Neurosci ; 22(1): 10, 2023 Jan 05.
Article En | MEDLINE | ID: mdl-36722239

BACKGROUND: Cholecystokinin (CCK) is one of the most abundant peptides in the central nervous system and is believed to function as a neurotransmitter as well as a gut hormone with an inverse correlation of its level to anxiety and depression. Therefore, CCK receptors (CCKRs) could be a relevant target for novel antidepressant therapy. METHODS: In silico target prediction was first employed to predict the probability of the bromophenols interacting with key protein targets based on a model trained on known bioactivity data and chemical similarity considerations. Next, we tested the functional effect of natural bromophenols from Symphyocladia latiuscula on the CCK2 receptor followed by a molecular docking simulation to predict interactions between a compound and the binding site of the target protein. RESULTS: Results of cell-based functional G-protein coupled receptor (GPCR) assays demonstrate that bromophenols 2,3,6-tribromo-4,5-dihydroxybenzyl alcohol (1), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (2), and bis-(2,3,6-tribromo-4,5-dihydroxybenzyl) ether (3) are full CCK2 antagonists. Molecular docking simulation of 1‒3 with CCK2 demonstrated strong binding by means of interaction with prime interacting residues: Arg356, Asn353, Val349, His376, Phe227, and Pro210. Simulation results predicted good binding scores and interactions with prime residues, such as the reference antagonist YM022. CONCLUSIONS: The results of this study suggest bromophenols 1-3 are CCK2R antagonists that could be novel therapeutic agents for CCK2R-related diseases, especially anxiety and depression.


Anxiety , Receptor, Cholecystokinin B , Molecular Docking Simulation , Anxiety/drug therapy , Central Nervous System , Computer Simulation
15.
J Nucl Med ; 64(6): 859-862, 2023 06.
Article En | MEDLINE | ID: mdl-36657979

PET/CT with the new 68Ga-labeled minigastrin analog DOTA-dGlu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-1-Nal-NH2 (68Ga-DOTA-MGS5) was performed on patients with advanced medullary thyroid cancer (MTC) to evaluate cholecystokinin-2 receptor expression status. Methods: Six patients with advanced MTC underwent PET/CT with 68Ga-DOTA-MGS5. From the images acquired 1 and 2 h after injection, preliminary data on the biodistribution and tumor-targeting properties were evaluated in a retrospective analysis. Results: In total, 87 lesions with increased radiotracer uptake considered malignant were detected (2 local recurrences, 8 lymph node lesions, 27 liver lesions, and 50 bone lesions). In general, radiotracer accumulation in lesions was higher at 2 h than at 1 h after injection (mean SUVmax, 7.2 vs. 6.0, respectively; mean SUVmean, 4.4 vs. 3.6, respectively). Conclusion: The preliminary results clearly demonstrate the potential of 68Ga-DOTA-MGS5 PET/CT in detecting local recurrence and metastases in patients with advanced MTC.


Positron Emission Tomography Computed Tomography , Thyroid Neoplasms , Humans , Receptor, Cholecystokinin B/metabolism , Gallium Radioisotopes/chemistry , Tissue Distribution , Retrospective Studies , Radiopharmaceuticals , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/metabolism
16.
Eur J Nucl Med Mol Imaging ; 50(3): 892-907, 2023 02.
Article En | MEDLINE | ID: mdl-36334104

INTRODUCTION: Medullary thyroid cancer (MTC) is a rare malignant tumour of the parafollicular C-cells with an unpredictable clinical course and currently suboptimal diagnostic and therapeutic options, in particular in advanced disease. Overexpression of cholecystokinin-2 receptors (CCK2R) represents a promising avenue to diagnostic imaging and targeted therapy, ideally through a theranostic approach. MATERIALS AND METHODS: A translational study (GRAN-T-MTC) conducted through a Phase I multicentre clinical trial of the indium-111 labelled CP04 ([111In]In-CP04), a CCK2R-seeking ligand was initiated with the goal of developing a theranostic compound. Patients with proven advanced/metastatic MTC or short calcitonin doubling time were enrolled. A two-step concept was developed through the use of low- and high-peptide mass (10 and 50 µg, respectively) for safety assessment, with the higher peptide mass considered appropriate for therapeutic application. Gelofusine was co-infused in a randomized fashion in the second step for the evaluation of potential reduction of the absorbed dose to the kidneys. Imaging for the purpose of biodistribution, dosimetry evaluation, and diagnostic assessment were performed as well as pre-, peri-, and postprocedural clinical and biochemical assessment. RESULTS: Sixteen patients were enrolled. No serious adverse events after application of the compound at both peptide amounts were witnessed; transient tachycardia and flushing were observed in two patients. No changes in biochemistry and clinical status were observed on follow-up. Preliminary dosimetry assessment revealed the highest dose to urinary bladder, followed by the kidneys and stomach wall. The effective dose for 200 MBq of [111In]In-CP04 was estimated at 7±3 mSv and 7±1 mSv for 10 µg and 50 µg CP04, respectively. Administration of Gelofusine reduced the dose to the kidneys by 53%, resulting in the organ absorbed dose of 0.044±0.019 mSv/MBq. Projected absorbed dose to the kidneys with the use of [177Lu]Lu-CP04 was estimated at 0.9±0.4 Gy/7.4 GBq. [111In]In-CP04 scintigraphy was positive in 13 patients (detection rate of 81%) with superior diagnostic performance over conventional imaging. CONCLUSION: In the present study, [111In]In-CP04 was shown to be a safe and effective radiopharmaceutical with promising theranostic characteristics for patients with advanced MTC.


Receptor, Cholecystokinin B , Thyroid Neoplasms , Humans , Receptor, Cholecystokinin B/metabolism , Receptor, Cholecystokinin B/therapeutic use , Precision Medicine , Polygeline/therapeutic use , Ligands , Tissue Distribution , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/drug therapy , Peptides
17.
J Pain ; 23(10): 1629-1645, 2022 10.
Article En | MEDLINE | ID: mdl-35691467

Recent studies have shown that the incidence of chronic primary pain including temporomandibular disorders (TMD) and fibromyalgia syndrome (FMS) often exhibit comorbidities. We recently reported that central sensitization and descending facilitation system contributed to the development of somatic pain hypersensitivity induced by orofacial inflammation combined with stress. The purpose of this study was to explore whether TMD caused by unilateral anterior crossbite (UAC) can induce somatic pain hypersensitivity, and whether the cholecystokinin (CCK) receptor-mediated descending facilitation system promotes hypersensitivity through neuron-glia cell signaling cascade. UAC evoked thermal and mechanical pain hypersensitivity of the hind paws from day 5 to 70 that peaked at week 4 post UAC. The expression levels of CCK1 receptors, interleukin-18 (IL-18) and IL-18 receptors (IL-18R) were significantly up-regulated in the L4 to L5 spinal dorsal horn at 4 weeks post UAC. Intrathecal injection of CCK1 and IL-18 receptor antagonists blocked somatic pain hypersensitivity. IL-18 mainly co-localized with microglia, while IL-18R mainly co-localized with astrocytes and to a lesser extent with neurons. These findings indicate that the signaling transduction between neurons and glia at the spinal cord level contributes to the descending pain facilitation through CCK1 receptors during the development of the comorbidity of TMD and FMS. PERSPECTIVE: CCK1 receptor-dependent descending facilitation may mediate central mechanisms underlying the development of widespread somatic pain via a reciprocal neuron-glial signaling cascade, providing novel therapeutic targets for the clinical treatment of TMD and FMS comorbidities.


Chronic Pain , Malocclusion , Nociceptive Pain , Receptor, Cholecystokinin B , Animals , Cholecystokinin/metabolism , Chronic Pain/metabolism , Hyperalgesia/metabolism , Interleukin-18/metabolism , Malocclusion/metabolism , Neuroglia/physiology , Neurons , Nociceptive Pain/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Cholecystokinin B/metabolism , Receptors, Interleukin-18/metabolism , Signal Transduction/physiology , Spinal Cord , Spinal Cord Dorsal Horn/metabolism
18.
Sci Rep ; 12(1): 9215, 2022 06 02.
Article En | MEDLINE | ID: mdl-35654807

The cholecystokinin-2 receptor (CCK2R) is a G protein-coupled receptor (GPCR) that is expressed in peripheral tissues and the central nervous system and constitutes a promising target for drug development in several diseases, such as gastrointestinal cancer. The search for ligands of this receptor over the past years mainly resulted in the discovery of a set of distinct synthetic small molecule chemicals. Here, we carried out a pharmacological screening of cyclotide-containing plant extracts using HEK293 cells transiently-expressing mouse CCK2R, and inositol phosphate (IP1) production as a readout. Our data demonstrated that cyclotide-enriched plant extracts from Oldenlandia affinis, Viola tricolor and Carapichea ipecacuanha activate the CCK2R as measured by the production of IP1. These findings prompted the isolation of a representative cyclotide, namely caripe 11 from C. ipecacuanha for detailed pharmacological analysis. Caripe 11 is a partial agonist of the CCK2R (Emax = 71%) with a moderate potency of 8.5 µM, in comparison to the endogenous full agonist cholecystokinin-8 (CCK-8; EC50 = 11.5 nM). The partial agonism of caripe 11 is further characterized by an increase on basal activity (at low concentrations) and a dextral-shift of the potency of CCK-8 (at higher concentrations) following its co-incubation with the cyclotide. Therefore, cyclotides such as caripe 11 may be explored in the future for the design and development of cyclotide-based ligands or imaging probes targeting the CCK2R and related peptide GPCRs.


Cyclotides , Amino Acid Sequence , Animals , Cyclotides/chemistry , HEK293 Cells , Humans , Ligands , Mice , Plant Extracts , Receptor, Cholecystokinin B , Sincalide
19.
Hypertension ; 79(8): 1668-1679, 2022 08.
Article En | MEDLINE | ID: mdl-35674015

BACKGROUND: The present study directly tested the crucial role of intestinal gastrin/CCKBR (cholecystokinin B receptor) in the treatment of salt-sensitive hypertension. METHODS: Adult intestine-specific Cckbr-knockout mice (Cckbrfl/fl villin-Cre) and Dahl salt-sensitive rats were studied on the effect of high salt intake (8% NaCl, 6-7 weeks) on intestinal Na+/H+ exchanger 3 expression, urine sodium concentration, and blood pressure. High-salt diet increased urine sodium concentration and systolic blood pressure to a greater extent in Cckbrfl/fl villin-Cre mice and Dahl salt-sensitive rats than their respective controls, Cckbrfl/fl villin mice and SS13BN rats. We constructed gastrin-SiO2 microspheres to enable gastrin to stimulate specifically and selectively intestinal CCKBR without its absorption into the circulation. RESULTS: Gastrin-SiO2 microspheres treatment prevented the high salt-induced hypertension and increase in urine Na concentration by inhibiting intestinal Na+/H+ exchanger 3 trafficking and activity, increasing stool sodium without inducing diarrhea. Gastrin-mediated inhibition of intestinal Na+/H+ exchanger 3 activity, related to a PKC (protein kinase C)-mediated activation of NHERF1 and NHERF2. CONCLUSIONS: These results support a crucial role of intestinal gastrin/CCKBR in decreasing intestinal sodium absorption and keeping the blood pressure in the normal range. The gastrointestinal administration of gastrin-SiO2 microspheres is a promising and safe strategy to treat salt-sensitive hypertension without side effects.


Hypertension , Receptor, Cholecystokinin B , Animals , Gastrins/metabolism , Intestines , Mice , Phosphoproteins , Protein Kinase C/metabolism , Rats , Rats, Inbred Dahl , Receptor, Cholecystokinin B/genetics , Receptor, Cholecystokinin B/metabolism , Silicon Dioxide/metabolism , Sodium/metabolism , Sodium Chloride/metabolism , Sodium Chloride, Dietary/metabolism , Sodium-Hydrogen Exchanger 3 , Sodium-Hydrogen Exchangers
20.
Peptides ; 153: 170811, 2022 07.
Article En | MEDLINE | ID: mdl-35594964

A group of long-acting, peptide-based, and selective GLP-1R/CCK-2R dual agonizts were identified by rational design. Guided by sequence analysis, structural elements of the CCK-2R agonist moiety were engineered into the GLP-1R agonist Xenopus GLP-1, resulting in hybrid peptides with potent GLP-1R/CCK-2R dual activity. Further modifications with fatty acids resulted in novel metabolically stable peptides, among which 3d and 3 h showed potent GLP-1R and CCK-2R activation potencies and comparable stability to semaglutide. In food intake tests, 3d and 3 h also showed a potent reduction in food intake, superior to that of semaglutide. Moreover, the acute hypoglycemic and insulinotropic activities of 3d and 3 h were better than that of semaglutide and ZP3022. Importantly, the limited pica response following 3d and 3 h administration in SD rats preliminarily indicated that the food intake reduction effects of 3d and 3 h are independent of nausea/vomiting. In a 35-day study in db/db mice, every two days administration of 3d and 3 h increased islet areas and numbers, insulin contents, ß-cell area, ß-cell proliferation, as well as improved glucose tolerance, and decreased HbA1c, to a greater extent than ZP3022 and semaglutide. In a 21-day study in DIO mice, once-weekly administration of 3d and 3 h significantly induced body weight loss, improved glucose tolerance, and normalized lipid metabolism, to a greater extent than semaglutide. The current study showed the antidiabetic and antiobesity potentials of GLP-1R/CCK-2R dual agonizts that warrant further investigation.


Diabetes Mellitus, Type 2 , Glucagon-Like Peptide-1 Receptor , Hypoglycemic Agents , Peptides , Receptor, Cholecystokinin B , Animals , Anti-Obesity Agents/pharmacology , Cholecystokinin/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/drug effects , Glucagon-Like Peptide-1 Receptor/metabolism , Glucose , Hypoglycemic Agents/pharmacology , Mice , Peptides/chemistry , Peptides/pharmacology , Rats , Rats, Sprague-Dawley , Receptor, Cholecystokinin B/agonists , Receptor, Cholecystokinin B/drug effects , Receptor, Cholecystokinin B/metabolism
...